

High-Performance Computing

Introduction

Me

Thomas Fogal
– “Tom”, please

– thomas.fogal@uni-due.de

Course Goals

Common language

Software engineering, practicals

HPC: theory && practice
– Distributed memory systems, MPI

– Memory wall. NUMA

– Shared memory, threading; OpenMP

– Filesystems, I/O

– Load balancing

– Profiling and scalability

'Research' / final project

Course Organization

1 part 'C', 1 part N-Body, 1 part Final Project

Clusters, MPI, OpenMP
– CUDA/OpenACC/OpenCL off-topic

● But we have another (master's) course for that!

Language choice: C, C++, Fortran 90+. GNU.

Why take this course?

You will come out a much better programmer.

Parallelism is not going away.

Specialized skill that's in demand, and growing

Popularity at parties++!

You won't find a more interested teacher!
– “Tom's erreichbarkeit war super!”

– “Die Kommunikation zwischen Lehrstuhl und Stundenten war
hervorragend.”

– “... by far my favorite course this semester. Learned a lot!”

– “... dies eines der besten Kurse war die ich bisher (???) durfte.”

It's fun!

Grading

N-body is individual
– Points will be on moodle

– Points will increase

Final project is group-based
– Proposals in January (concurrent with N-body!)

– Due end of February

– You choose the number of points

– Final demo / writeup

Grading is simple: points earned vs. points available ratio

No quizzes / tests / etc.

HiWis? Thesis? Research?

● Our groups' focus
● Ace the class first.

“Plan”

1. Intro, Linux essentials

2. C: pointers, basic IO

3. N body

4. Distributed memory

5. Shared memory

6. Memory access, t/s consistency

7. Scalability, profiling

8. Distributed Filesystems

9. Future clusters

Assignments

6 or 7 total
– Generally a couple of weeks per

– Build on each other
● Live with your code!

No sharing code!

No sharing code!
– … but please discuss :-)

Expectations

● Know an imperative language
● Do your homework
● Ask Questions
● Issues with me?

– Talk to me.

– Meet with Prof. Krüger (jens.krueger@uni-due.de)

– DUE admin

Practicals / Recommendations

● Use C.
● Code locally, test on Cray

– Don't waste CPU hours.

– VM if you need it

– ssh to student.uni-due.de

Simulation Overview

Simulation Scenario: Combustion

mailto:jens.krueger@uni-due.de

Simulation Scenario: NBody

Simulation Scenario: DBS

Simulation Scenario: Fluid mixing

Simulation Scenario: MHD

Simulation Cycle

1. idea/theory/model

2. discretize domain

3. encode math into calculation

4. run simulation

5. verify result / explore data

1.See our SciVis course :-)

6. GOTO 1

Parallel Simulation

1.Reduce time to solution

2.More nodes → more memory

Parallelization

Hard.
– Race conditions

– Coordination

– Performance!

How?
– Automatic parallelization?

– Threads?

– MPI
● System assigns procIDs → processors!

Threads

● Task-based parallelism
● data parallelism?

Message Passing Interface

Single program, different data
– SPMD

Each process assigned an ID

Explicit synchronization

Explicit memory transfer

Input

Disk → memory (restart)

Configuration
– Derived from visualizing the data :-)

Analysis / statistics

Output

Distributed file systems
– GFS, GoogleFS (GFS..), Hadoop FS, Lustre,

(NFS?)

Usage patterns
– Dump memory to disk (checkpoint)

– Data arrays

– Appends (log files)

N-Body Problem

Questions

?

Newtonian Gravity

F1 = F2 = G (m1m2)/r2

Many Particles

Summation of Forces

Vector Addition

Vector Addition

+ + + +

+ +

= F

Particle Force Summation

mi pi=G∑
j=1

N−1

(m jmi(p j−pi))/∣p j−pi∣
3

G=6.67×10−11 N (
m
kg

)
2

Practicals

How large is T?

Linux Essentials

Terminal

$ _

$ cmd1
$ cmd2

Output

$ cmd
cmd's output
more output
$

Canceling Commands

$./a.out^C
$

Navigation

$ cd directory
$ cd ..
$ ls
$ pwd

Compiling

$ gcc -Wall -Werror -ggdb3 file.c

-Wall: turn on all warnings

-Werror: warnings are errors

-ggdb3: debug symbols on

-O3: heavy Optimization

Debugging

$ gdb -q ./a.out

(gdb) run

…

^C

(gdb) bt

(gdb) list

Valgrind

$ valgrind --leak-check=full --track-
origins=yes --leak-resolution=high
--show-reachable=yes ./a.out ...

