High-Performance Computing

Introduction

Me

Thomas Fogal

- “Tom”, please
- thomas.fogal@uni-due.de

Course Goals

Common language
Software engineering, practicals

HPC: theory && practice

— Distributed memory systems, MPI

- Memory wall. NUMA

- Shared memory, threading; OpenMP
- Filesystems, I/O

- Load balancing

- Profiling and scalability

'Research’ / final project

Course Organization

1 part 'C', 1 part N-Body, 1 part Final Project
Clusters, MPI, OpenMP

- CUDA/OpenACC/OpenCL off-topic
« But we have another (master's) course for that!

Language choice: C, C++, Fortran 90+. GNU.

Why take this course?

You will come out a much better programmer.
Parallelism is not going away.

Specialized skill that's in demand, and growing
Popularity at parties++!

You won't find a more interested teacher!

- “Tom's erreichbarkeit war super!”

- “Die Kommunikation zwischen Lehrstuhl und Stundenten war
hervorragend.”

- “... by far my favorite course this semester. Learned a lot!”
- “... dies eines der besten Kurse war die ich bisher (??7?) durfte.”
It's fun!

Grading

N-body is individual

- Points will be on moodle

- Points will increase

Final project is group-based

- Proposals in January (concurrent with N-body!)
- Due end of February

- You choose the number of points
- Final demo / writeup

Grading is simple: points earned vs. points available ratio
No quizzes / tests / etc.

HIWIs? Thesis? Research?

* Our groups' focus
* Ace the class first.

© 00 N OO0 O &b W DN B

“Plan

. Intro, Linux essentials

. C: pointers, basic IO

. N body

. Distributed memory

. Shared memory

. Memory access, t/s consistency
. Scalability, profiling

. Distributed Filesystems

. Future clusters

Assignments

6 or 7 total

- Generally a couple of weeks per

- Build on each other
 Live with your code!

No sharing code!

No sharing code!

- ... but please discuss :-)

Expectations

Know an imperative language

DO your homework
Ask Questions

Issues with me?

- Talk to me.
- Meet with Prof. Krlger (jens.krueger@uni-due.de)
- DUE admin

Practicals / Recommendations

e Use C.

* Code locally, test on Cray

- Don't waste CPU hours.
- VM if you need it
- ssh to student.uni-due.de

Simulation Overview

Simulation Scenario: Combustion

mailto:jens.krueger@uni-due.de

Simulation Scenario: NBody

Simulation Scenario: DBS

Volume Geometry
Filename Filename

P1 VTA31 C3 V25 Patient 1

halamus

Subthalamic
Nucleus

Electrode
Contacts

Simulation Scenario: Fluid mixing

Simulation Scenario:

2007 Feb 3 04:24:00

o B~ W N -

Simulation Cycle

. Idea/theory/model

. discretize domain

. encode math into calculation
. run simulation

. verify result / explore data

1.See our SciVis course :-)

.GOTO 1

Parallel Simulation

1.Reduce time to solution
2.More nodes — more memory

Parallelization

Hard.

— Race conditions
— Coordination
— Performance!

low?

- Automatic parallelization?
- Threads?

- MPI
e System assigns proclDs — processors!

Threads

» Task-based parallelism
» data parallelism?

Message Passing Interface

Single program, different data
- SPMD

Each process assigned an ID
Explicit synchronization

Explicit memory transfer

Input

Disk - memory (restart)

Configuration
- Derived from visualizing the data :-)
Analysis / statistics

Output

Distributed file systems

- GFS, GoogleFS (GFS..), Hadoop FS, Lustre,
(NFS?)

Usage patterns

- Dump memory to disk (checkpoint)
- Data arrays
- Appends (log files)

N-Body Problem

Questions

?

Newtonian Gravity

F,.=F,=G (mm,)/r2

Many Particles

Summation of Forces

@‘
\\\ /’

Vector Addition

N

Vector Addition

Particle Force Summation

N—1

m; p,=G Z (mjmi(pj_pi»/‘pj_pi

J=1

‘3

ﬂ)z

G=6.67x10 " N(
kg

Practicals

How large is T?

Linux Essentials

Terminal

$ cmdl
$ cmd?2

Output

$ cmd
cmd's output
more output

$

Canceling Commands

$./Ja.out"C
$

Navigation

$ cd directory
$cd ..

$Is
$ pwd

Compiling

$ gcc -Wall -Werror -ggdb3 file.c
-Wall: turn on all warnings
-Werror. warnings are errors
-ggdb3:. debug symbols on

-O3: heavy Optimization

Debugging

$ gdb -q ./a.out
(gdb) run

C
(gdb) bt
(gdb) list

Valgrind

$ valgrind --leak-check=full --track-
origins=yes --leak-resolution=high
--show-reachable=yes ./a.out ...

