
Informatik und Angewandte Kognitionswissenschaft
Lehrstuhl für Hochleistungsrechnen

Thomas Fogal
Prof. Dr. Jens Krüger

High-Performance Computing
http://hpc.uni-due.de/teaching/wt2014/nbody.html

Exercise 0 (10 Points)

All assignments should be pushed to your personal Git repository. As-
signments are due at midnight on the due date. No late assignments will be
accepted.

All assignments must include a Makefile for compiling your assignments.
Assignments which do not compile will receive 0 points. Assignments that do
not satisfy the test inputs will receive 0 points.

Please do not include output other than what was requested by the
assignment details.

Your assignment will be graded on the duecray.uni-due.de super-
computer. It does not matter if your program runs correctly on another
machine; it must run correctly on duecray to receive credit.

This assignment has many purposes: requesting a user account for future
use, learning the basics of C programming, and learning this course’s unique
submission and grading system.

1 Requesting an account (0 points)

We will use a local supercomputer for this course. You will need to access
the machine remotely, via ssh.

Not all students have access to this machine: your account must be enabled
for it. I will request an account on your behalf, but I require your student
information.

1

http://hpc.uni-due.de/teaching/wt2014/nbody.html
http://www.git-scm.org/
https://www.gnu.org/software/make/manual/make.html


Send me (thomas.fogal at uni-due) an email from your uni-due account
with your name, uni-due username, and matriculation number by Friday,
October 24th.

Note that you may have already done this in class during the kick off
meeting.

2 Averaging (10 points)

Your task is to write a C99 program that computes the average of the integer
values given on standard input. The number of values to be input is variable.
Your program should continue reading values until it receives EOF during
a read. The program should then output a single line, the floating point
average of all values given.

You may assume that there is at least one value given as input.
A sample session is given in Listing 1:

$ ./avg
1
2
1.500000
$ echo "1 2" | ./avg
1.500000
$ echo "1 2 3 4 5" | ./avg
3.000000
$ echo "30 45" | ./avg
37.500000
$ echo "36 42 943 323 23 23 45 903 245" | ./avg
287.000000

Listing 1: Sample runs of avg program.

Your submission must include a makefile that builds your code.
The makefile should build an executable named avg. We will use GNU
make in this class. You can learn the basics of make by asking Tom for an
introduction or through simple web searches. You might want to start with
the makefile given in Listing 2.

CFLAGS:=-std=c99 -Wall -Wextra
all: simple.o avg

avg: simple.o
$(CC) $(CFLAGS) $ˆ -o $@

clean:
rm -f avg simple.o

Listing 2: Example makefile.

2



3 Submission

Git is a version control system. There is a wealth of documentation available
on the web, but feel free to visit your friendly neighborhood TA (i.e. Tom) if
you are having difficulties. We have set up a server, users, and repositories
for use in this course.

Access to your repository is protected via public/private key pairs. Your
key and username will be provided via email after our first meeting. In-
stalling the key on Linux and OS X is fairly simple: first save the key as
~/.ssh/hpckey. Then open up the file ~/.ssh/config (create it if it
does not exist) and add the lines:
Host 134.91.11.132 hpcgit

Port 5555
User your-user-name
IdentityFile ˜/.ssh/hpckey

To clone a repository named ‘repo’, use the command line:
$ git clone gitolite@hpcgit:repo.git

This will create a directory named ‘repo’, which you should place your
source in.

3.1 Your account information

Your username is the first letter of your first name followed by your last
name. For example, since my name is ‘Tom Fogal’, my username is ‘tfogal’.
Usernames are always lowercase.

The repository for this assignment is already created. The naming con-
vention is as0-username.

3.2 Automation

When you push your code to the server, it will automatically download the
head of your master branch, compile it, and run a simple test or two. The
tests’ output will be returned as part of the ‘push’ command’s output. You
may push (and therefore test) your code as many times as you would like
without penalty, provided it is before the deadline.

These automated tests are not exhaustive: passing them with flying colors
does not necessarily mean you will receive 100% of the credit for an assignment.
However, failing any automated tests ensures you will receive a 0.

The smart student tests early and often.

3

http://www.git-scm.org

	Requesting an account (0 points)
	Averaging (10 points)
	Submission
	Your account information
	Automation


